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The authors propose a new method to visualize browsing behavior in
so-called product search maps. Manufacturers can use these maps to
understand how consumers search for competing products before
choice, including how information acquisition and product search are
organized along brands, product attributes, and price-related search
strategies. The product search maps also inform manufacturers about
the competitive structure in the industry and the contents of consumer
consideration sets. The proposed method defines a product search
network, consisting of the products and links that designate whether a
product is searched conditional on searching other products. The authors
model this network using a stochastic, hierarchical, and asymmetric
multidimensional scaling framework and decompose the product
locations as well as the product-level influences using product attributes.
The advantages of the approach are twofold. First, the authors
simultaneously visualize the positions of products and the direction of
consumer search over products in a perceptual map of search proximity.
Second, they explain the formation of the map using observed product
attributes. The authors empirically apply their approach to consumer
search of digital camcorders at Amazon.com and provide several
managerial implications.
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Mapping Online Consumer Search

The marketing literature has long recognized the impor-
tance of understanding the search phase of the consumer
choice process for several reasons. First, prechoice con-
sumer activities, such as search, reveal limits on consumer
consideration sets (Roberts and Lattin 1991; Siddarth,
Bucklin, and Morrison 1995; Urban, Hulland, and Weinberg
1993). Second, prepurchase product search reflects con-
sumer strategies of information acquisition, including how
search is organized, which may be informative about substi-
tution patterns and potential choices. Third, knowledge of
consumer information acquisition is fundamental to plan-
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ning marketing communications and retail distribution
(Newman and Staelin 1972). Finally, the introduction and
widespread adoption of the Internet has greatly facilitated
consumer information acquisition, and online consumer
search has become ubiquitous. In this context, the goals of
this article are to propose a practical and exploratory
method that manufacturers can use to analyze and visualize
rich consumer search patterns and obtain insights into the
competitive structure of online markets in their industry.
Our modeling approach begins by defining a network
representation of product search data. This network
expresses the topology of search across products, such as
whether a given product is searched conditional on another
product being searched. Then, we analyze this network
using asymmetric multidimensional scaling (MDS). In par-
ticular, we propose a hierarchical MDS model that estimates
product positions in a latent attribute space and direction of
search along pairs of products. In addition, we implement a
property fitting regression (DeSarbo and Hoffman 1987) as
a hierarchical regression step in a Bayesian estimation
framework to interpret the dimensions of our latent attribute
space. Our complete approach to describing the product
search data yields a visualization that we refer to as a “prod-
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uct search map.” In this map, products likely to be searched
together are located close to each other, and products
unlikely to be searched together are placed at distant posi-
tions. The map also depicts the relative search attractiveness
of each product and identifies the direction and asymmetry
of consumer search among the products. Finally, the map
can be used to shed some light on substitution patterns.
Local subsets of products on the map can be interpreted as
stereotypical products or consideration sets that are searched
together and, presumably, compete more intensely. We also
argue that the product search maps are an efficient and prac-
tical way to organize the massive number of possible con-
sideration sets.

From a managerial perspective, this article offers three
important and practical features to consumer durable goods
manufacturers.! First, it provides a descriptive model of
how products are searched online. From this model, manu-
facturers can obtain a detailed product-centric visualization
of the competitive structure in their industry, revealing typi-
cal search patterns that involve their products. This visuali-
zation also helps them identify the set of competing prod-
ucts that are most frequently searched alongside their own
products in the same session. Second, our proposed model
has broad applicability. We apply our model to online search
data from the largest online retailer in the world, Amazon.
com. Although we illustrate the model with data from one
product category, the method applies to many product cate-
gories sold at Amazon.com—notably, to durable goods sec-
tors, for which useful data on search and sales are often dif-
ficult to find. Our method can also be applied to product
search or site navigation data from several other large online
retailers (e.g., Walmart.com). Third, although obtaining fre-
quent product-level search or sales data using surveys is
prohibitively expensive for firms selling durable goods in
multiple categories, each involving a large number of alter-
natives, a benefit of our method is that it only uses publicly
available summaries of search data. This makes our pro-
posed descriptive method for studying consumer search cost
effective. In addition to being free of charge, the data we use
are not survey based but rather revealed measures of con-
sumer search, which are viewed as more reliable (Newman
and Lockeman 1975).

We empirically apply our method to the study of con-
sumer search for digital camcorders at Amazon.com. From
the analysis of our product search maps, we find that con-
sumers predominantly organize their search for a camcorder
by media format (e.g., DVD, hard disk, MiniDV); that is,
consumers are more likely to search multiple products that
share the same media format and less likely to search across
media formats. Within each media format, consumer search
is price driven, with similarly priced products more likely to
be searched together and, thus, to be perceived as closer
substitutes. Surprisingly, the brand attribute plays a less criti-
cal role than price or media format during the consumer
search process in the camcorder category.

Finally, we demonstrate that manufacturers and product
managers can use our estimated product search maps to con-

1We emphasize that our target audience is not online retailers, which
have access to more detailed data, but the manufacturers that would not
have access to such data.

duct an in-depth, product-level analysis of consumer search.
For each focal product, our results indicate the comprehen-
sive set of comparison candidates, as well as the intensity of
customer traffic to and from each of these candidates.

We organize the rest of the article as follows: In the next
section, we discuss the relevant literature and subsequently
describe the data used in this study. Then, we put forth our
model, followed by a section on estimation. Next, we dis-
cuss the results of a numerical data experiment that verifies
parameter recovery of the proposed stochastic MDS model.
Following this, we discuss the results of the proposed
model. Finally, we conclude with managerial implications
and directions for further research.

RELEVANT LITERATURE

We discuss the two research streams most relevant to
this study: (1) consideration set formation and information
processing and (2) asymmetric MDS. In marketing, the con-
sideration set literature follows the footsteps of economic
theory of information search (Stigler 1961) because the con-
cept of consideration is a logical outcome of information
search (Hauser and Wernerfelt 1990; Roberts and Lattin
1991). In many previous two-stage choice models, researchers
have inferred consideration sets from individual-level
choice data (Bronnenberg and Vanhonacker 1996; Mehta,
Rajiv, and Srinivasan 2003; Siddarth, Bucklin, and Morrison
1995; Swait and Erdem 2007), with the exception of Moe
(2006), who uses individual-level clickstream data for
browsed products. Common to these studies is that con-
sideration sets are latent constructs inferred from the indi-
vidual panel data in consumer packaged goods and that they
improve the statistical fit of the empirical model (Chiang,
Chibb, and Narasimhan 1998). This approach is not appli-
cable to studying consumer durable goods, because repeat
purchases are often too infrequently observed, making the
empirical investigation of product substitution in durable
goods challenging. We aim to overcome this challenge by
exploiting information contents in product search by a large
number of consumers.

In behavioral research, Payne (1976) and Bettman and
Park (1980) report that the formation of consideration sets is
associated with a subset of product attributes. Furthermore,
Shugan (1980) shows that selective search can be a result of
rational strategies of consumer search. Most relevant to a
substantive contribution of the current study is Gilbride and
Allenby’s (2004) work, which investigates consumer use of
attribute-based screening rules in a choice-based conjoint
study. They infer the screening attributes and their impor-
tance from choice decisions and report that price and body
style are the two most frequently used screening attributes in
the camera category. Therefore, these are the attributes that
camera manufacturers should primarily consider for new
product development and planning marketing communica-
tions. However, it is reasonable to assume that screening
attributes are category dependent. In this study, we propose
a simple and cost-effective way to identify such patterns that
emerge during consumer search in durable goods, using
publicly available data for a large number of categories.

We also aim to add to the literature on brand mapping
(e.g., Bijmolt and Wedel 1999; Elrod 1988; Erdem 1996).
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One aspect of our contribution is to visualize products in a
latent attribute space, according to whether consumers tend
to search for them together. This means that instead of esti-
mating brand maps from choices or similarity ratings used
in the past, we estimate such maps from search patterns.
Moreover, our data on online search patterns are generally
directional (i.e., search of product A given search of product
B does not generally occur with equal incidence as in the
opposite direction). For our modeling purpose, we adopt an
MDS framework. Multidimensional scaling is a set of
mathematical techniques that are suitable to uncover the
latent structure among objects in a network by exploring
similarities and dissimilarities in the data. Asymmetric MDS
allows the similarity between two objects to be direction
dependent. A few asymmetric MDS studies have previously
appeared in the marketing literature. DeSarbo and Manrai
(1992) operationalize Krumhansl’s (1978) conceptual
model of distance density and construct a visualization of
the competitive automobile segments using switching data.
DeSarbo, Grewal, and Wind (2006) propose a stochastic
MDS model and analyze the asymmetric competitive mar-
ket structure in luxury automobile and portable phone mar-
kets using consumer consideration and choice sets. Asym-
metric MDS models have also been researched and used
outside marketing (e.g., Okada and Imaizumi 1987; Saburi
and Chino 2008). In these models, the symmetric part of the
data is typically modeled with measures of interobject dis-
tance, such as Euclidean distance between product posi-
tions, and asymmetry is allowed by increasing distance in
one direction but not the other. In the modeling section, we
introduce a representation of the symmetric and asymmetric
components adapted from Okada and Imaizumi (1987).

SEARCH DATA

Amazon.com summarizes and posts information from
consumer prepurchase browsing activities in most durable
goods categories. For each available product, the data show
a list of products in the same product category that were fre-
quently viewed by shoppers in one browsing session. For
example, if a large number of consumers who viewed product
j also viewed product k, k appears on the viewed product list
(hereinafter view list) of j. Furthermore, products in j’s view
list are presented in descending order of frequency, with
products that appear higher having a stronger relationship to
product j than products appearing further down in the view
list. Collected across all J products, we refer to these data as
“product search data.”

The product search data are an outcome of an item-to-
item, collaborative filtering mechanism, in which the rela-
tionship between two products is determined by how fre-
quently users jointly view the products (Linden, Smith, and
Zada 2005). Appendix A, Part 1, presents details on Amazon.
com’s data generation. The product search data constitute a
collection of directional relationships or links that exist
between products. When considered together, these links
lead to an associative network of choice alternatives, in
which a node represents a product and an edge a relation-
ship between two products. We represent the product search
data using a J x J product search matrix Y, in which an entry
Yk represents a presence or absence of a relationship from
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product j to product k (i.e., yj = 1 if k appears on j’s view list
and yj, = 0 if otherwise).? As Appendix A, Part 1, indicates,
Amazon.com provides the top M most relevant products for
a focal product in the view list. This means that y; = 1 if
k is one of the top M most relevant products for focal j and
yjk = 0 if otherwise. These data are asymmetric because
product j may be among the most relevant products for k,
but not necessarily vice versa. Appendix A, Part 2, provides
an illustrative example of the source of asymmetry in the
product search data. The observed asymmetry in the product
search data provides information to managers on how con-
sumers navigate over choice options, thus allowing for a
more comprehensive analysis of the relationships among the
products. Therefore, it is our goal to incorporate such asym-
metry explicitly in the proposed model.

For the empirical analysis, we used data from the digital
camcorder category. Currently the dominant type in the
camcorder category, digital camcorders store images and
audio on a digital storage medium and offer good picture
and sound qualities. In brief, our data collection process is as
follows: We first downloaded Web pages for more than 250
camcorder products, each containing product-related data.
For each product, two Web pages were downloaded. The
first Web page contained information about product search
data (i.e., which products consumers searched in the same
online session as the chosen product). The second Web page
contained detailed product information (e.g., list price,
brand, media format, number of pixels, screen size, sales
rankings, customer reviews), which we denote by product
characteristics data. After we downloaded the Web pages,
we parsed relevant information and assembled it into daily
data sets. We repeated this process on a regular basis for a
year beginning in June 2006 and constructed a longitudinal
database.

Although our approach is scalable to the full set of
products, for practical illustration, we narrowed down the
number of products in the empirical study using the follow-
ing criteria. First, we used products from the top four manu-
facturers (Sony, Canon, JVC, and Panasonic) and the three
most common media formats (DVD, hard drive, and
MiniDV). These four brands and three formats encom-
passed the large majority of digital camcorders available at
Amazon.com during our data collection period. Second, we
excluded professional grade digital camcorders because
industry reports classify them as a separate category. Last,
we excluded any product that does not appear in the view
list of other products because consumer search of such
product is not identified. Applying these criteria narrowed
the number of products down to 62. All the top selling prod-
ucts are included in this subset.

In our empirical analysis, we used product search and
characteristics data for August 2006. For these data, we
define product j as being related to product k if j appears at
least once on the daily view list of k during the month. We
checked robustness of our analysis against alternative defi-
nitions of product relations. Specifically, we replicated our

2We do not have customer count data (i.e., the number of times two
products are viewed together). Availability of such data would allow for a
more detailed modeling approach, such as that of Wedel and DeSarbo (1996).
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analysis with weighted relations between pairs of products,
where the weights were based on the strength of product
links over time. We operationalized this by converting
the daily ranking into daily percentile rankings and then
averaging them for August.3 Our results are not sensitive to
this alternative definition, and we do not include the details
of this robustness check here to avoid repetition.

Table 1 shows the breakdown of these products by brand
and storage media format. The table indicates that Sony has
the most models sold at Amazon.com and that MiniDV is
by far the most popular media storage format, constituting
about half the products in our sample.

Table 2 presents a percentage breakdown of the relation-
ships among the different brands. The first row shows the
links of Sony products to products of other brands. For
example, note that among all the relationships in the prod-
uct search data, 18.51% are from Sony products to other
Sony products and 5.17% are from Sony products to Pana-
sonic products. For the reverse relationship, 6.25% of the
links are from Panasonic to Sony.

We now discuss the relational information among the
products in the product search data. Among the 62 products,
the total number of existing relationships is 832, or 22% of
all entries in the product search matrix Y, excluding the
diagonal elements. The number of other products that
appear on the view list of a given product ranges from 6 to
20, with a mean of 13.4 and a standard deviation of 3.2. The
frequency with which a product appears on the view lists of
other products ranges from 1 to 31, with a standard devia-
tion of 7.5. The disparity between these two sets of sum-
mary statistics indicates that there are products that have
short view lists but appear frequently on the view lists of
other products (and vice versa), which provides evidence of
asymmetry in the data.

Finally, we discuss a potential concern with the data
available at Amazon.com. It is possible that Amazon.com
could use the product search data to achieve its business
goals (e.g., direct consumers to higher-margin products or
clearance items). However, this is unlikely for several rea-
sons. First, provision of truly similar products is strongly
aligned with Amazon.com’s commercial interests. By offer-
ing more relevant selections at lower search cost, Amazon.
com is helping consumers choose products that best fit their
needs, enhancing consumer shopping experience, and reduc-
ing price sensitivity (Lynch and Ariely 2000). Amazon.com’s
heavy investment in personalization and recommendation

3We first encode the ranking of product rj;, such that the most popular
product at time t is encoded as J; and not as 1. We then compute the per-
centile ranking of product j at time t as (Bajari, Fox, and Ryan 2008) %jt =
[rj/max(r)] = (rj/J), where rj is j’s ranking at t and J is the number of
products at time t.

Table 1
NUMBER OF PRODUCTS BROKEN DOWN BY BRANDS AND
MEDIA FORMATS

Formats Sony  Panasonic  Canon Jvc Total
MiniDV 8 8 11 6 33
Hard drive 4 0 0 7 11
DVD 9 5 4 0 18
Total 21 13 15 13 62

Table 2
PERCENTAGE BREAKDOWN OF PRODUCT SEARCH DATA
AMONG BRANDS

Formats Sony  Panasonic  Canon JVC  Total (%)
Sony 18.51 5.17 6.13 3.85 33.66
Panasonic 6.25 8.53 5.05 1.44 21.27
Canon 6.49 5.53 13.34 1.80 27.16
vC 4.45 2.88 3.00 7.57 17.90
Total (%) 35.70 22.11 27.52 14.66 100.00

Notes: For example, the cell (Panasonic, Sony) with a value of 6.25 indi-
cates that 6.25% of all the relationships among the products are from Pana-
sonic products to Sony products.

technologies reflects such interests. Second, the product
search data are stable over time and do not show a sudden
inclusion or radical movement of products at the top of the
list, which would be expected if Amazon.com were to
manipulate this list. Last, we verified through communica-
tions with a knowledgeable former manager at Amazon.com
that the product summary data solely represent consumer
browsing behavior.4

MODEL
The Asymmetric Distance Model

We chose to use an MDS approach, mainly driven by our
interest in visualizing the similarity between product
options that are searched online. Given the nature of our
data, for which the tendency to search choice option k from
option j is not the same as the tendency in the opposite
direction, it is necessary to model similarity between a prod-
uct pair asymmetrically. Therefore, our starting point in
modeling is asymmetric MDS (DeSarbo and Manrai 1992;
Holman 1979; Krumhansl 1978; Saburi and Chino 2008).
This form of MDS generalizes symmetric MDS by using
additional object-specific quantities that represent the skew-
ness in otherwise symmetric distance. Specifically, follow-
ing Saburi and Chino (2008), we define the asymmetric dis-
tance from product j to product k by

(1) gjkzdjk—rj+rk,

where djy is the distance between product j and k and rj and
ry are quantities to be estimated, which allow for g # gy;.
We define djy as the Euclidean distance between two prod-
ucts j and k located at coordinates z; and z, in a derived

j
latent attribute space of P dimension, as follows:

P
Z(ij ~2yp)? = "ZJ - Zk"'
p=1

The products j =1, ..., J can be represented graphically
in maps by plotting their coordinates z; in the latent attri-
bute space. In this graph, r; and r, in Equation 1 can be
depicted as the radii of circles centered at product j’s and k’s

positions, respectively. This “position-circle” model is a

@)

4Amazon.com chooses consumer trust and long-term relationship over
short-term gains. Senior Amazon.com executives have also made this point
to the press in the past. For example, the shareholder letter for the first
quarter of 2009, as well as an earlier letter in 1997 available at Amazon.
com’s Web page, emphasizes the importance of long-term relationship with
customers.
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parsimonious way of representing the asymmetric similari-
ties between brands. Thus, we model the symmetry in the
data with the distance term, djk, whereas the asymmetry is
captured by the difference in the radii, r; and r.. With this
formulation, a product with a small radius will be searched
more frequently and draw more search from large-radius
products than vice versa.5 A simple example illustrates this
concept: Assume that for two hypothetical products, d;, =5,
r;=1, and r, = 3, where product k has a larger radius than
product j. Computing distances using Equation 1, we obtain
gk =7 and gi; = 3; that is, the distance from j to k is larger
than that from k to j. We used this distance to express a
greater likelihood (modeled next) of observing a link from
the larger-radius product k to the smaller-radius product j
than vice versa. To the extent that more search and more fre-
quent consideration lead to higher sales, it is likely that a
product with a small radius has higher demand than a large-
radius product. To facilitate the analysis and interpretation
of the map, we enforce strict positivity on the distance (d;)
and radii (rj and ry) in Equation 1. In contrast, the resulting
combined term of gj is not subject to such a restriction
because our interpretation is not based on this term.

An implicit assumption in our approach is that the data
are mainly driven by consumer search activities, and thus
the searched products are informative about consumer
desire to view the product pages. However, it is possible that
Amazon.com’s product recommendations and other online
navigational tools influence consumer search. Among the
many online features, we focus on product recommenda-
tions because research suggests that they affect consumer
behavior the most (Bodapati 2008; Garfinkel et al. 2006).
To infer a product search map net of the effects of Amazon.
com’s recommendations, we need to explicitly account for
their effects. Our proposed approach is to control for such
effects by adding observable recommendation features to
Equation 1:

3) gk = d]k = Tj + I — BXEiC,

where X contains the online recommendations that relate

options J and k and the coefficient B measures how much
they affect the effective distance from j to k. In the presence
of the last term, the effective distance g is associated with
the latent product positions, the radii, and Amazon.com’s
recommendations. Therefore, the estimated product loca-
tions z; and radii rj can be interpreted as net of the influence
of recommendations. In the “Empirical Analysis” section,
we provide details on how we operationalize the recommen-
dations X"

To complete our model, we added stochasticity to the
asymmetric distance variable gj,. Stochastic MDS assumes
that the effective distance between objects is obtained by the
perturbation of the distance g;,, which includes unexplained
factors that may influence the relationship between j and k
(DeSarbo and Cho 1989; Jedidi and DeSarbo 1991; Saburi
and Chino 2008):

SThere are alternative ways to implement the asymmetry. For example,
DeSarbo and Manrai (1992) use a distance density model, in which rj is
modeled as the density of products around j. We allow the 1 to vary inde-
pendently of density. We chose this proposed model for two reasons: First,
the formulation is parsimonious and flexible enough to fully capture the
asymmetry among the products, and second, we are interested in explain-
ing the radii using observable product attributes.
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TeC
(4) Sjk = g_]k + ejk = djk - I'j + I — BX_]]( + ejk,

where ej is a stochastic disturbance term. A feature of sto-
chastic MDS models is that they allow for statistical infer-
ence of model parameters—in this case, the z; and B, for
allj=1,...,Jandp=1,...,P.

In addition to plotting the product positions and account-
ing for asymmetry in product search, we aimed to interpret
the dimensions of the derived space. To this end, we used
property fitting, in which product characteristics such as
brand and price are regressed on the estimated product posi-
tions, identifying for each characteristic a vector of direc-
tions in the map that represents the best-fitting relation to
map positions. Intuitively, the obtained fitted vector points
in the direction in which products with a given characteris-
tic are located on the map.

Similar to property fitting, we interpreted the dimensions
of the derived space using a hierarchical model, for which,
at the upper level of the hierarchy, we estimated product
positions and radii and, at the lower level of the hierarchy,
we regressed the product positions and radii on product
attributes. Property fitting involves regressing product
attributes on map positions, whereas the hierarchical model
proposed herein regresses map positions on product attributes
(see also DeSarbo and Hoffman 1987). Specifically, the
hierarchical model’s purpose is to explain product positions

p j

z;j, as a linear model of product characteristics X;:
5) zj, = XiB, + €ps €p ~ N(0, 63, for Vj, p,

where z;, is the location of product j in dimension p, X;
is a [1 x K] vector of product j’s attribute values, and 3,
is a [K x 1] vector, where K is the number of product attri-
butes. To be precise, Equation 5 represents the inverse of a
property fitting regression. The regression coefficients [3, =
[Bp,1s ---» Bp k] _capture how the product attributes explain
the product positions in the derived space. More specifically,
Bp measures how well the product attributes X; explain the
pth dimension of the derived space. In a similar manner, we
also explain product radii as a function of product attributes:

(6) rj = X;B, + €. € ~ N(0, o), for Vj,

where B, is a [K x 1] vector that measures the effects of
product attributes on the magnitude of the radii.®

Likelihood Function

In our modeling strategy, we aim to explain the search
patterns as represented by the product search matrix, Y, an

6Instead of modeling the remaining product characteristics as explicitly
affecting gj, in Equation 4, we chose a hierarchical model in which the
product characteristics implicitly affect gy through z; and r;. If we include
the product characteristics in Equation 4 explicitly, the resulting map
would only capture the residual relationship after accounting for the prod-
uct characteristics. Therefore, the map would only reflect residual search
behavior among the products. We believe that the proposed product search
map, which captures all relevant product information, is much more manage-
rially useful (as in DeSarbo and Jedidi 1995; DeSarbo and Rao 1986). In
addition, there are two major differences between the proposed model and
that of Hoff, Raftery, and Handcock (2002). First, our model explicitly
addresses the asymmetry in the data. Second, we explain the latent posi-
tions and radii using the underlying product characteristics. Thus, our
hyperparameters can be potentially used in policy simulations such as posi-
tioning and repositioning (DeSarbo and Hoffman 1987; DeSarbo and
Jedidi 1995). This would be a challenge using Hoff, Raftery, and Hand-
cock’s (2002) approach.
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unweighted and asymmetric matrix. An entry y; = 1 indi-
cates a presence of a relationship from j to k, whereas yj, =
0 indicates an absence of a relationship. The probability of
observing a relationship from j to k using the effective dis-
tance from Equation 4 is expressed as follows:

(7) Pr(ka =1)= Pr(dJk -1 + Iy — BXS?(C + Cik < BO + ejko),

where [ + ej is a random threshold for a link to be real-
ized. Assuming that the error terms eji and ey are i.i.d. ran-
dom variables with an extreme value distribution, we can
quantify the probability of observing a link between j and k
as follows:

(®)  L(yj = 1[Xree, 7, 7, 1, 1y, By, B)
= Pr(ej — ejko < Bo — llzj — zill + 1j — 1yc + BXGi
=[1+ exp(||zj — Zk" - rj + Iy — B lﬁ:(c - Bo)]_l.

Assuming conditional independence among relationships
Yik (see Hoff, Raftery, and Handcock 2002), the likelihood
of the hierarchical model is given as follows:

) LYz R, 0. X, X = LI Lerey, o, o o B
x Pr(z;, /Bp. 07, X)
x Pr(r;, 1By, o7 X),

where X = {Xj}, Xrec = {X}°}, Z = {z;}, R = {rj}, and 6 =
the set of parameters. The conditional independence
assumption means that after interproduct distances and
asymmetries are accounted for, the relationships y;. are
independent. This model parsimoniously handles complex
dependencies among the yj such as transitivity (i.e., in gen-
eral, elevated search activity between products j and k and
between products k and m implies elevated search activity
between j and m) and reciprocity (i.e., elevated search activ-
ity from j to k is statistically associated with elevated search
activity from k to j).7

ESTIMATION

Markov Chain Monte Carlo Estimation

We used Bayesian estimation to obtain the posterior dis-
tributions of the parameters of the proposed hierarchical
model. Specifically, we used Markov chain Monte Carlo
(MCMC) methods to simultaneously estimate the product
positions z; and radii rj, as well as parameters f3,,, B, and f3.
In Equation 3, we need to set one r; = 0 for identification
purposes (for additional details, see Appendix A, Part 3).
Other identification conditions with respect to product posi-
tions are well documented by Abe (1998), Elrod (1988), and
Erdem (1996). To initialize the MCMC, we estimated the
product positions z; and radii r; using maximum likelihood
estimation. After estimating positions z; and radii rj, we
regressed them on the product characteristics and obtained
the hyperparameter estimates of f3, and B,. By using the
maximum likelihood estimation values as the starting val-

7Recall that in addition to modeling the links yji, we also modeled the
strength of the link. We did this by modeling, for each product m, whether
product j or product k appears higher on m’s view list. This leads to a dif-
ferent model than the one in Equation 8 and a different likelihood function.
Because the results from the two approaches are similar, we chose to use
the parsimonious model described previously. The alternative formulation
and results are available from on request.

ues in the MCMC, we aimed to reduce the number of burn-
in iterations in the chain (Hoff, Raftery, and Handcock
2002). We used the Metropolis—Hastings algorithm and
tuned the variances of the jumping distributions that gener-
ated candidate draws. To do so, we dynamically adjusted the
variances of the jumping distributions during the burn-in
period to achieve an acceptance ratio of approximately
20%-25%. We performed visual inspections of the chain to
verify convergence. We drew 32,000 samples from the joint
posterior distribution, using 27,000 iterations for burn-in
and the final 5000 iterations to compute the posterior means
and standard errors of the model parameters. Appendix B
gives the detailed sampling sequence of the MCMC method
and the prior distributions.

Data Experiment

To verify that the proposed model is well recovered, we
designed and conducted a numerical data experiment. Our
data experiment is based on the parameter estimates from
the actual empirical data. That is, we first estimated the
hypermodel parameters from the full product search model
using the actual empirical data, treated them as the true
model parameters, and then used them to generate the data
for the experiment. We believe the proposed approach is
more realistic than that based on a randomly chosen set of
true parameters.

We generated the data as follows: With values of f,,
we stochastically determined the positions z;, in a two-
dimensional space (p = 1, 2) as a linear combination of the
seven product attribute values (K = 7) in Equation 5. We
also stochastically generated the radii rj using B, in Equa-
tion 6.

Given the product positions, radii, and other model
parameters, we computed the asymmetric distance among
all product pairs using Equation 3 and the corresponding
link probability {p;c} of a product pair using Equation 8.
Next, we created a binary matrix Y by performing Bernoulli
trials using the computed probabilities {pj.}, where Y is a
realization from the underlying link probabilities.

Next, using Y as our dependent variable, we estimated the
hierarchical model using the steps outlined in the preceding
section. The total number of parameters for location and
radii is 186 because we estimate two coordinates and a
radius for all J = 62 products. Only 182 parameters are iden-
tified because we needed to fix the location of one product,
the radius of a product, and the first coordinate of another
product. At every sweep of the sampler, in addition to sam-
pling the locations and radii, we also drew from the poste-
rior distributions of the hyperparameters.

The four subplots in Figure 1 facilitate a visual compari-
son of the true and recovered positions and radii for 62
products as well as the hyperparameters of the hierarchical
model. We present the true parameter values on the x-axis
and their recovered counterparts on the y-axis. In all sub-
plots, we observed that the recovered parameters lie tightly
centered on the 45-degree lines. Consistently, we find high
correlations between the true and the mean of the recovered
parameters, shown at the top of each subplot, ranging from
.87 to .99. The 95% credibility interval of the posterior
parameter distributions covers the majority of true parame-
ter values. We conclude that the parameters of the proposed
model are well recovered.
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Figure 1
DATA EXPERIMENT SCATTERPLOTS OF TRUE AND RECOVERED PRODUCT COORDINATES, RADII, AND HYPERPARAMETERS
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EMPIRICAL ANALYSIS
Model Selection

We used the deviance information criterion for model
selection.8 We estimated four models in a 2 x 2 selection

8We also used Bayes factors (Kass and Raftery 1995) for model selec-
tion, computed from the log marginal density. This resulted in the same
model selection.

design, varying the number of dimensions of the latent
product space (two dimensions versus three dimensions)
and the directionality of search (symmetric, with all radii
equal to 0, versus asymmetric, with product-specific radii).
The results are as follows:

Two Dimensions Three Dimensions

Symmetric 2005 1756
Asymmetric 1919 1598
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For both the two- and three-dimensional models, the inclu-
sion of radii improves the model fit significantly. Therefore,
we conclude that the product search data warrant the
explicit modeling of the asymmetry.

Comparing the specifications with two and three dimen-
sions, we observe an improvement in the deviance informa-
tion criterion with the additional dimension. Many MDS
applications also report a similar statistical model fit
improvement with the additional dimension to the derived
space (DeSarbo and Manrai 1992). As previous literature
has pointed out, the decision about which dimensionality to
use for a given data set is as much substantive as statistical
(Kruskal and Wish 1983). Following this convention, we
chose the three-dimensional model over higher-dimensional
models.

Effect of Online Recommendations

We now discuss how we operationalized Amazon.com’s
online recommendations Xii*in Equation 3 and their influ-
ence on search. There are several forms of product recom-
mendations at Amazon.com. Because our aggregate-level
data summarize within-category consumer search activities,
we are mainly concerned with recommendations for prod-
ucts within the same category. We identified two such fea-
tures. First, Amazon.com provides recommendations to
other same-category products based on purchases by past
consumers conditional on viewing a product. These product
recommendations provide easier access to relevant prod-
ucts, influence consumer search behavior, and may be
responsible for the formation of interproduct relationships.
Second, the default category page at Amazon.com provides
a list of products sorted in terms of their popularity. Product
proximity in this list may affect consumer behavior (Bryn-
jolfsson, Dick, and Smith 2004), especially during the search
initiation process, inducing consumers to conduct joint
search among the options and creating interproduct relation-

ships. We parameterized Xji“in Equation 3 accordingly:

(10) gy = dyc — 1 + 1 = BXGE = die — 15 + 1 = BreeNjk — Biiseli
where Ny is the fraction of days k is recommended from j,
I 1s an indicator variable that takes the value of 1 if j and k
are located in the same page of the sorted product list, and
the coefficients B,.. and B};i; measure their respective effects
on the effective distance gj. For example, Ny = .5 means
that k appears as a recommended product on j’s product
page 50% of the time during the data collection period. A
larger Njy and a positive B, imply a smaller gj because
easy access from j to k may induce more consumer search
of k from j. Similarly, if products j and k are located closer
in the product list, I;, = 1, they may lead to more frequent
joint search of j and k, yielding a smaller distance gj.

In terms of results, we found that the posterior means of
the recommendation coefficients, B,.. and By, are 10.96
and .38, with standard errors of 1.85 and .21, respectively.
For products with recommendations (i.e., {j, kINjk >0} and
{j, kIIjk > 0}), these results imply that the Amazon.com rec-
ommendations increase link probabilities of Pr(y;, = 1) by,
respectively, .14 and .007 on average. We infer that both prod-
uct recommendations and colocation in the sorted list have
small but significant effects on the interproduct relationship.
These findings are consistent with prior research (Garfinkel
et al. 2006). The estimated latent product positions as well as

the radii reported in the following section describe consumer
search activities net of the effects of recommendations.”

Category-Level Consumer Product Search

Figure 2 shows the posterior means of the product posi-
tions and radii. This figure depicts several pieces of infor-
mation about search. First, consumers are more likely to
search together products that are located closer to each other
during online browsing sessions. The location of products
in the derived space is not uniform, and Figure 2 suggests
the existence of clusters of products. These clusters have
managerial relevance to manufacturers, as we discuss sub-
sequently, and our approach readily identifies cluster mem-
bership from the product search data.

Second, a small radius means that a product will be
searched more frequently in relative terms because it is
more likely to become a search destination from other prod-
ucts than a source for search to other products. Therefore,
the radii depict the directions or flows of consumer search,
which is from large- to small-radii products, and identify the
“absorbing” products in consumer search (small-radii prod-
ucts). This implies that though consumers may initiate their
searches in the area in which large-radii products are
located, they tend to move toward and terminate search
around the location of products with small radii. For better
interpretation, we display sales ranks of the products in the
figure as well, with darker circles indicating products with
high sales. We find that the correlation between the sales
ranks and the radii is .78, confirming that search and even-

9We also estimated Equation 10 without Amazon.com’s recommenda-
tions. The correlation of pairwise effective distances (gj) between the
models with and without the recommendations is .99. This high correlation
implies that the recommendations have only marginal effect on the overall
formation of the product search map because their occurrence is quite
sparse.

Figure 2
POSTERIOR MEANS OF THE ESTIMATED PRODUCT
LOCATIONS AND RADII IN THE PRODUCT SEARCH MAP
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Notes: Circles represent product locations, circle radii represent the relative
attractiveness of search, circle colors (darker) represent more sales, arrows
represent the direction in which products with a given attribute can be
found in the map, and the length of the arrows represents the degree of fit.
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tually sales tend to be positively related to small-radii prod-
ucts. In addition, we observe that there are one or two prod-
ucts with small radii (and with higher sales) in each major
cluster, which implies the existence of a small set of prod-
ucts that dominate search in the category (see also Figures 3
and 4).

Third, the arrows in the graph help interpret the latent
attributes and represent the direction in which products with
the corresponding attributes are likely to be found. For
example, DVD-based products are more frequently found
along the negative quadrant of the first dimension of the
product search map. Technically, these arrows are con-
structed using property fitting regression coefficients. The
arrow length is proportional to the R-square of each regres-
sion; in other words, a longer arrow means that the physical
attribute is well explained by the latent dimensions. The
arrow direction is computed as a ratio of the regression
coefficients among the dimensions. Appendix A, Part 4,
presents details on how to construct the arrows.

Consumer Search Patterns

We now analyze the resulting search patterns using Fig-
ures 3 and 4, the projections of the three-dimensional map
onto two-dimensional spaces. First, we infer that media for-
mats, which form three major segments in both maps, heav-
ily guide consumer product search. This finding is con-
firmed by the property fitted arrows; the top three longest
arrows, along with the price arrow in Figure 4, are all asso-
ciated with the media formats. The three media format
arrows are separated by angles of approximately 120
degrees in Figure 3, which is the maximum possible separa-

Figure 3
PROJECTION OF THREE-DIMENSIONAL PRODUCT SEARCH
MAP ON DIMENSIONS 1 AND 2
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tion in a two-dimensional space. Their separations are also
close to 120 degrees in Figure 4.

Second, from Figure 4, we note that the price explains the
third (and also to some extent the first) dimension of the
search map well. In this map, darker circles represent more
expensive products (not higher sales, as in the previous two
maps). The figure shows the transition of price from the
lower-right-hand corner of the map (less expensive prod-
ucts) to the upper-left-hand corner (more expensive options).
It strongly supports the view that the aggregate-level con-
sumer search data contain information that identifies differ-
ent segments in terms of price and that, in general, con-
sumers search for products of similar price ranges.

Third, comparing the length of property fitted arrows for
brand names with those of formats and price, we find that
the effects of brand name on search are less important. More
specifically, arrows for brand names such as Sony, JVC, and
Canon are about half the size of the camcorder format
arrows, and Panasonic’s arrows are almost of zero length.
Closer inspection reveals that Panasonic has products scat-
tered all over the attribute space. In summary, the graph sug-
gests that search takes place along media format first and,
within media format, is based on price. In contrast, search is
organized by brand to a lesser degree. We discuss the mana-
gerial implications of this search organization in the follow-
ing sections.

Table 3 shows the values for the hyperparameters from
our hierarchical regressions. They convey the same infor-
mation as the regression coefficients from property fitting.
In the hierarchical regression, one media format (DVD) and
one brand (Panasonic) serve as the base, captured by the
regression constant. Consistent with our findings from the

Figure 4
PROJECTION OF THREE-DIMENSIONAL PRODUCT SEARCH
MAP ON DIMENSIONS 1 AND 3
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Table 3
REGRESSION OF PRODUCT POSITIONS AND RADII ON PRODUCT ATTRIBUTES

Dimension 1 Dimension 2 Dimension 3 Radius

Constant 3.54 (2.53) -1.64 (-.92) -9.43 (-8.73) 49 (.85)
Sony -.67 (-1.19) 1.70 (2.45) -2.47 (-4.00) -08 (-.19)
Canon 1.18 (2.07) 271 (4.12) -1.52 (-2.39) 24 (59
JvC 221 (3.34) -1.37 (-1.93) -57 (-.94) 47 (.96)
MiniDV 6.95 (12.59) -50 (-.52) 3.86 (4.29) -01 (-.03)
Hard drive 85  (94) -7.75 (-9.05) 3.17 (2.75) -07 (-.13)
Price -6.97 (-4.07) 3.96 (1.98) 14.19 (10.48) 1.46 (1.71)
o2 2.88  (.56) 5.83 (1.12) 312 (.82) .61 (12)
R2 .89 71 .79 .20

Notes: t-statistics are in parentheses.

product search map, the most significant and important
coefficients correspond to the two media formats and price.

Last, it is important to note that the inferred consumer
search strategies are similar to those in recent empirical lit-
erature, even though we do not impose a priori restrictions
on the nature of consumer search. When facing a large num-
ber of options, consumers adopt heuristics-based approaches,
such as noncompensatory processes (Gilbride and Allenby
2004) and lexicographic strategies (Yee et al. 2007), using
observed product attributes. Prior behavioral research has
reported consumers’ adoption of such rules (e.g., Bettman
and Park 1980; Payne 1976). Our map shows that con-
sumers use media formats and price to direct their search in
the digital camcorder category.

Product-Level Competitive Analysis

In the preceding section, we focused our discussion on
consumer search patterns and competitive product structure
at the category level. In this section, we demonstrate how
manufacturers can use the product search map to identify
neighboring products of each alternative in great detail.

As an illustration, Figure 5 focuses on an area with prod-
ucts in the MiniDV segment, which is located on the right-
hand side of Figure 4. The products have different brands
and show different prices. Darker colors indicate more
expensive products, and brand names are coded with differ-
ent symbols. Consistent with the conclusions of the previ-
ous section, we observe a clear pattern of increasing prices
within the MiniDV segment. The majority of products at the
bottom subcluster are priced lower than $300 and include
the cheaper options in the MiniDV segment. Moving toward
the top left, products become more expensive. Along this
direction, different brands are scattered without a clear pat-
tern. Therefore, we infer that within the MiniDV products,
consumer search is more price driven, with similarly priced
products more likely to be searched together and, thus, to be
perceived as close substitutes. We note a similar pattern in
the lower-left-hand corner for the DVD-based product clus-
ter as well.

As a more specific example of how this map can be used,
we now take the view of a manufacturer studying consumer
search and the competitive structure in the category. Sup-
pose that Sony is interested in establishing which products
one of its models is regularly searched with and, thus, the
products with which it closely competes. We focus on the
Sony DCR-HC26, a MiniDV Digital Handycam Camcorder
with 20x Optical Zoom priced at $307. Using Figure 5,

Figure 5
DETAIL OF THE PRODUCT SEARCH MAP IN THE MINIDV AREA
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Notes: Plot symbols are as follows: Sony (square), Panasonic (circle),
Canon (triangle), and JVC (star); darker colors indicate higher retail prices;
and the numbered products constitute the six closest products to the Sony
DCR-HC26.

Sony can identify and monitor the products located closest
to this product. Table 4 lists the closest six competitors,
along with some of their characteristics. These products are
all MiniDVs and in a narrow price range. The average price
of the cluster of numbered brands (including the Sony
DCR-HC26) is $300. These products are the ones that Sony
should monitor most closely because they often occur in the
same set of searched products as the Sony DCR-HC26. In
contrast, the average price of the cluster in the top left of the
graph, containing two other Sony products, is $522. From
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Table 4
PRODUCTS MOST CLOSELY SEARCHED JOINTLY WITH THE
SONY DCR-HC26 RETAILING AT $307
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Table 5
MOST FREQUENTLY SEARCHED ALTERNATIVES FOR EACH
TOP-SELLING PRODUCT

Product Number Brand Price ($) Media

1 Sony 333 MiniDV
2 Panasonic 292 MiniDV
3 Canon 262 MiniDV
4 Canon 285 MiniDV
5 Canon 313 MiniDV
6 JvC 310 MiniDV

Notes: For correspondence between product numbers and product posi-
tions, see Figure 5.

the distance between the expensive and cheaper product
clusters, the Sony DCR-HC?26 is not often searched together
with the more expensive products, suggesting that cannibali-
zation of higher-priced and potentially higher-margin prod-
ucts is not a concern in this case.

Extending the preceding example, Table 5 lists the search
sets (i.e., the most commonly searched alternatives) for the
three best-selling products, two Sony and one Canon. First,
we note that the search is aligned with the same media for-
mats, with each product being searched often with the same
format products. Second, price seems to play an important
role as well, especially for the Canon Elura-100, because
prices of the five closest search substitutes fall in a tight
range of —$99 to +$69. In contrast, we observe a wider price
range for products that closely compete with Sony DCR-
SR100. Therefore, we can conclude that cannibalization is a
concern for the relatively expensive Sony DCR-SR100
because the top three most jointly searched alternatives are
other less expensive Sony products. Although we are not
able to measure the level of cannibalization using our
approach, we believe that this information is essential for
Sony managers regarding its product line management.

In general, we conclude that the maps in Figures 25 are
useful tools for manufacturers to gauge search patterns at
one of the largest online retailers, including search proxim-
ity, direction of search, and organization of search. More-
over, given any focal product, the maps are an efficient
medium for manufacturers to review the competitive struc-
ture among the products and identify likely consideration
sets in which their products compete. In addition, the maps
are based purely on publicly available data and are relatively
easy to compute.

MANAGERIAL IMPLICATIONS AND CONCLUSIONS

To the best of our knowledge, no study has previously
analyzed the structure of consumer information acquisition
in a product category with many choice options. In the cam-
corder category, the set of searched products is typically a
small subset of all options, and therefore knowledge about
the contents of this subset is essential to understanding con-
sumer preferences. Online browsing behavior forms a natu-
ral environment to study product search among durable
goods. Our study is also the first to use site navigation data
at the world’s largest online retailer, Amazon.com, that are
publicly available across many product categories to inves-
tigate prepurchase search patterns.

We model product search data using a hierarchical, sto-
chastic, and asymmetric MDS model. Using hierarchical

Focal Product/
Ranking of Conditional Search

Sony DCR-DVDA405/Retail price: $601

Brand  Price ($) Media

1 Sony 743 DVD

2 Panasonic 699 DVD

3 Canon 647 DVD

4 Sony 522 DVD

5 Sony 639 MiniDV
Canon Elura 100/Retail price: $361

1 Canon 313 MiniDV

2 Sony 394 MiniDV

3 Canon 293 MiniDV

4 Canon 262 MiniDV

5 Panasonic 430 MiniDV
Sony DCR-SR100/Retail price: $900

1 Sony 600  Hard drive

2 Sony 700  Hard drive

3 Sony 800  Hard drive

4 JvC 596  Hard drive

5 JvC 697  Hard drive

Bayesian estimation, we jointly estimate product positions
and product-specific influence (i.e., radius), as well as
hyperparameters that measure the contributions of product
attributes on the formation of the dimensions of the product
search map.

From a substantive perspective, the analysis of product
search data in this article provides the following findings:
First, using product search maps, managers can monitor in
detail each product’s neighboring competitors during con-
sumer search stages (illustrated in Figure 5). This map
enables managers to scrutinize the local relationships
among products and, thus, to better understand substitution
patterns for their own products during consumer search
activities. Unlike many brand maps in previous marketing
literature, which visualize competition among a few brands,
this intuitive and informative map provides detailed infor-
mation on whether a product is likely to be searched more
often and if it is likely to be the end of the search process.

Second, a category-level analysis helps managers under-
stand which and to what extent product attributes influence
the contents of consumer product search. We provide sev-
eral category-level insights, including the competitive prod-
uct structure from the product positions, direction of con-
sumer search from the product radii, and the effects of
product attributes on the formation of the search map. In
addition, the arrows in the product search map, resulting
from the property fitting approach, depict the degree and
direction of the influence of brands, media formats, and
prices on the formation of consumer product search. Useful
to marketing managers in the digital camcorder category is
the finding that the intensity of consumer information
search within the same media format is far greater than
across media formats. We find that within the same media
format, consumer search is more price driven than brand
driven. Overall, we find that the role of brand is less signifi-
cant. This finding is consistent with a recent, large-scale
industry survey that reports the wavering power of brands in
consumer electronics categories (Stewart-Allen/GMI Brand
Barometer). This seems to be a finding with substantial
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implications in, for example, advertising content decisions.
Financial Times recently quoted a Sony executive saying,
“We cannot just rely on the brand to sell the product” in an
article that reports Sony’s planned attempt to shift its adver-
tising strategy (Harding 2009). Our analysis using public
data from 2006 shows signs that lead to a similar conclusion
in the consumer electronics market.

Third, manufacturers can use the product search map to
diagnose the performance of their product lines. For exam-
ple, JVC has a MiniDV-based product offered at the retail
price of $424 located at (17, 0, 0) in Figure 2. Judging from
its isolated position on the map, JVC managers should infer
that it is not searched frequently with other products and
does not compete very effectively. The relative isolation of
this JVC product is confirmed by the observation that the
average distance between this specific JVC product and all
other MiniDV-based products is 9.5, whereas the average
distance among MiniDV-based products is 7.7. In turn, this
information might cause JVC management to review its
product to judge the efficacy of its positioning and viability.
Last, we point out that as more online data are becoming
available to practitioners and the marketing research com-
munity, well-tailored MDS techniques may prove to be use-
ful exploratory tools to analyze and enhance understanding
of brand search and consideration.

This study also has limitations, which may serve as fur-
ther research opportunities. First, the collected data reflect
the prepurchase browsing behavior of consumers, and thus
the findings only apply to prepurchase stages of shopping
behavior. However, given that subsets of searched products
constitute consideration sets, from which final choices are
made, our findings can be used with caution to infer mecha-
nisms responsible for choice set generation in the digital
camcorder category. Second, the nature of our data and
model does not allow us to model consumer heterogeneity
fully. Combining the current data with other sources, such
as search frequency or choice data, may make such an
investigation possible. We leave this for further research.

APPENDIX A

Part 1: Amazon.com’s Aggregate-Level Product Search
Data

According to Amazon.com’s patent (Linden, Smith, and
Zada 2005), the sequence of operations generating the prod-
uct search data is as follows:

1. User clickstream or query log data that reflect products each
user views during an ordinary browsing session are stored
for a certain period. A product is shown to a shopper only if
the corresponding product detail page is requested.

2. The normalized degree of relationship between two products
is measured according to how frequently consumers view
them together using rjk = (njk/\/ nj\/ ny), where n; is the number
of consumers who searched product j and n;y is the number
of consumers who searched j and k.

3. The preceding measurement is repeated on all pairs of products.

4. For each focal product, related products are sorted in the
order of a descending relationship.

5. Among the sorted products, products outside the focal prod-
uct’s category are removed from the list. Note that a category
can be defined in several different ways at Amazon.com. We
only collected search data in the camcorder industry for
choice options for digital camcorders and analog camcorders
based on the Hi8 medium.

6. The top M related products are extracted for each focal
product.

Part 2: Illustration for Asymmetric Product Search Data

We illustrate the asymmetry in the product search data.
Assume three products, A, B, and C, and the following num-
bers of consumers who viewed each product and pairs of
products: np =20, ng = 10, nc = 10, nag = 5, ngc = 3, and
Npoc = 4.

The relationships among the three products are computed
as follows:

rap= ——AB— = 35,1, .= ——BC___ 30,r, = ——AC___ 73
Jnang Jngnc Jnane

Table A1 lists the related products for each product using
the preceding computed quantities. The first column repre-
sents the focal products and the first row represents the
related products. The number in parentheses is the order in
which the products appear in the view list.

Now, we focus on the one product in each row that is
most closely related to each focal product. Products A’s, B’s,
and C’s closest relationships are to products B, A, and B,
respectively. Table A1 shows that the product pair (A, B) is
symmetric because they have the closest relationship to
each other. The pair (A, C) is also symmetric because B is
the closest to both products. However, the pair (B, C) is
asymmetric because A is closest to B but B is closest to C;
they are not mutually closest. For product search data
involving a large number of products, there will be symmet-
ric as well as asymmetric pairs of products, reflecting com-
plex consumer product search behaviors.

Table A1
ILLUSTRATION FOR ASYMMETRIC PRODUCT SEARCH DATA

Focal Products A B C
A 35(1) 28 (2)
B 35(1) 302
C 28 (2) .30 (1)

Part 3: Identification Restrictions

The identification restrictions for our three-dimensional
model are as follows: We adopt the identification restric-
tions in MDS that Abe (1998), Elrod (1988), Erdem (1996),
and Okada and Imaizumi (1987) outline. The main goal is
to prevent translation, rotation, and refection of positions
during the estimation process. The conditions are as follows:

1. One product located at (0, 0, 0).
2. One product located at (0, 0, R+).
3. One product located at (0, R+, R+).

Note that in a T-dimensional space, there are T degrees of
freedom for translation, T(T — 1)/2 degrees of freedom for
rotation, and T degrees of freedom for reflection. Therefore,
for T = 3, we must apply nine constraints in total. In addi-
tion, to identify the radii, we set the radius of one product to
a constant (Okada and Imaizumi 1987).

Part 4: Property Fitting

In this section, we discuss how we obtain the property fit-
ting arrows in the product search maps in Figures 2, 3, and
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4. After we estimate the product positions Z, we regress
each product attribute on the product positions,

Xk= ZBk +E,

where X is a [J x 1] vector for the kth attribute values (k =
1, ..., K) for J products; Z is a [J x P] matrix, with each
product j’s coordinates [z, ..., zjp ] on row j; By is a [P x 1]
vector that measures the contribution of Z to Xy; and E is

a [J x 1] vector of errors. In our empirical analysis, J = 62
P =3, and K = 7. For each regression for k, we obtain Rk
and f§ = [Bx.1> Bk.2> Bk 3], which jointly determine the arrow
in Figure 2. If the kth attrlbute values are well explalned by
Z, we obtain a high Rk To represent this scenario with a
long arrow, we compute the arrow vector for the kth attri-
bute as follows:

R]% Bk,l R% Bk,2
2 2 2 2 2 2
\/Bk,l +B, +Bis \/Bk,l +Bi, +Bis

Rl% 2 Bkj 2 |
VB +BR2 +Bis
Note that the total length of this arrow is Rlz( (as desired). We

repeat this process for all k to construct the arrows shown in
the map.

APPENDIX B

The following are the priors for the hypermodel parameters:

0 0
B, ~ (BOVO) 2~1G(vg,50).V,=| 0 62 0 |and
0 0

r’°r

B, ~ N(BO VO) 62 ~ 1G(v?,50).

Furthermore, we assume the following parameters for the
priors K=7;p=1,...,P;and P =3:

By = oK,Vg = 1001, 0 = 4,50 = 1,0 = OK,VBO =1061,,

V0 =4,50=1.
Here, I represents an identity matrix of size [K x K], and

Ok is a vector [K x 1] of zeros. The following is the
sequence for the Gibbs sampler:

Step 1. Draw Bp,p= 1,...,P

2 30.yO
BP|X’ ZP’ cSP’ BP’ VBP

- N{[(v[gp )71+X'X:|_1 [(vﬁop )_1 BO + X'zp},[(vgp )71+X'XI1 }

where Zp = [le, ey ZJP] and X is a [J x K] matrix with each

product j’s attributes X; = [X; , Xjk] on row j.
2
Step 2. Draw OpP= 1,...,P
2 0.0 0 —3 p IS
02|X,Z,,. B, 09,50 ~ IG| v0 +1J, T |
Yp

where Z;, = [z, ..., zjp]" and S, = (1/0)Z(zj, — X3,)2.

25
Step 3. Draw p,.

Br|X’R’Gr2’BQ’VO

sl e Topy e g o] .

where R = [y, ..., 1j] .

Step 4. Draw G%.

o2|X,R,B,. v

r’ r’ r

050 +J
~IG(DO+J ¥J

047
where 5, = (1/)Z(r; - X2

Step 5. Draw z;.
Product j’s position is z; = [z;, ...

posterior, K, for Zjp

s sz] . The conditional
is

K(ij|Y, Nrec’ Ilist’ Z—jp’ {rj}’ XJ’ Bp’ G]%’Brec’ﬁlist)
o< L(Y|Nm N Ilist’ {Zj}s {rj}’ Brec’ Blist) X p(ZJP|XJ’ BP’ G%)’

where Z_
and

= {zj\zjp, Y = {yjx}> Nree = {Njic}s Tise = {T )

L(Y|Nrec ’ Ilisl’ {Zj}’ {rj}’ I?)rec’ I"))list)

o
I I I IPr Jk:1|Nrec’Ilisl’Zj’Zk’rj’rk’Brec’Blist)’

j=lk=j
p(ij|Xj’ p’Gg):q)(XjBP’G;%)’

where ¢ is the probability density function of the normal
distribution. We draw from the posterior using a Metropolis—
Hastings algorithm. We use a normal distribution as the pro-
posal distribution, p(z] p|z p) = 0(z; G%). We accept the can-

ip’
didate, zjp, with the following acceptance probability:

) (Y|Nrec’ l1st’Z—_]p’ ip’ r} Brec’Bhst)
min| 1,
L(Y|Nrec’ Ilist’ Z_jp, ip’ {rj}’ Brec’ B]ist)
’ 2 4
y p(szlXj, P Gp) y p(ij|ij)
5 ,
p(szIXj, pacp) P(ij|sz)
Because ¢ is symmetric, the ratio p(z]p|z;,)/p(zj|Z},) is

unity. Therefore, we can simplify the preceding acceptance
probability as follows:

L{YNyeo Liger Z s 20 113} Brecs B
min| 1, ( rec’ “list i’ Zip rec lm)
(Y|Nrec’ l1st’Z—_]p’ Jpv{r} Brec’Bllst)
, 2
Xp(szlxj’ﬁp’cp)

p(szlxj’ P’ 612)) .
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Step 6. Draw ;.
The conditional posterior for r; is as follows:

K(rj|Y’ Nrec’Ilist’{Zj},R_j,Xj,Br,G?,BmC,B“Sl)
= L(YlNrec, Ilis“{Zj}7{rj}’BmC’Blist)xp(rjlxjv r’Glg),
where R_; = {r }\rj and p(rj|X; B 02 = o(X; B,, 62

We accept the candldate I w1th the followmg acceptance
probability:

. (YlNrec’Ihsl’{ZJ} -J’ J’Brec’Blist)
min| 1,
( rec’ hsl’{z_]} -j’ J’Brec’Blist)
%)

p(5x p(5h )w

(JlXJ r p) ( lr)

where we use the normal distribution as the proposal distri-
bution p(r’; |r) = (rj, GR) Because ¢ is symmetric, the ratio

p(r J|r )/p(r |r i) is umty Therefore, we can further simplify
the acceptance probability as follows:

L(YINrec’Ilist’{ } -j’ J’Brec’ﬁlm) Xp(rj,lxj’ r’Gl%)‘|
LY IN s Ty {2} Rt B B ) (1. B, 03) |

min| 1

Step 7. Draw P,
The conditional posterior for B, is as follows:

K(BreclY’ Nrec’ Ilist’ {Zj}’ {rj}’ Blist)
L(YINrec’ Ilist’ {Zj}’ {rj}’ Brec’ Blisl) x p(Brec)’

where p(B,..) is the prior distribution for B,... We accept the
candidate [, with the following acceptance probability:

(YlNrec’Ilist’{Z‘} {r} B;ec’Blist)
(YlNrec’Illst’ {z; } Brec’Bhst)

p(Blec) p(Bieclﬁrec)}
o (Bree)” P(BreclBrec) |

Because we assume a diffuse prior for p(B,..) and the nor-
mal probability density function for the proposal distribution

Of p(B;eC”?)rec)’ bOth ratlos Of p(B;eC)/p(Brec) and p(B;eclﬁrec)/
P(BrecIBree) are unity. Therefore, we can simplify the preced-

ing acceptance probability as follows:
L(Y|Nrec’ Lig> (2} {15} Brec: Blist)
L(Y|Nrec’ Lo {21 A0} Bree» Blist)

Step 8. Draw Bjig.
The conditional posterior for By is as follows:

min| 1,

K(ﬁ]ist|Y’ Nrec’ Ilist’ {Zj}’ {rj}’ Brec)
L(Y|Nrec’ Ilist’ {Zj}’ {rj}’ Brec’ Blisl) x p(Blisl)’

where p(Bj;) is the prior distribution for By;,. We accept the
candidate By;y with the following acceptance probability:

(YlNrec’Illst’ {z; } Brec’Bhst)
(Yanec’ Ilisl’{Zj}’{rj ’Brec’Blist)

p(Biist ) x p(Biist |Blist) .
P(Bist) P(Bis[Biist)

Because we assume a diffuse prior for p(By;s,) and the nor-
mal probability density function for the proposal distribution

of p(BiisPise), both ratios of p(Biise/P(Brist) and p(BiilBris)/
P(BiisIBlisy) are unity. Therefore, we can simplify the preced-
ing acceptance probability as follows:

min| 1,

X

L(Y|Nrac’ Ilist’ {Zj}’ {rj}’ Brec’ Biist)
L(Y|Nrec’ L {21 A5} Bree» Blist)
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